
LM Guide Type HRW – Wide Rail, Four-Way Equal-Load Type

Construction and Features

Balls roll in four rows of precision-ground raceway on an LM rail and an LM block. The end plate attached to the LM block causes the trains of balls to circulate.

As the balls are held in place by the retainer plate, they do not fall off if the LM block is removed from the rail (except for types HRW 12 and 14LR).

The four trains of balls are arranged so that the contact angle is 45°, allowing each train of balls to bear an equal load rating in all four directions: radial, reverse-radial, and the two lateral directions. This type can therefore be used in any installation direction. Moreover, type HRW permits the application of a well-balanced preload, making it possible to increase rigidity in the four directions while keeping the friction coefficient low. The overall height is designed to be as low as possible. The LM block is made as thick as possible and is designed to be solidly fastened with six bolts (excluding types HRW12, 14LR, 17, and 21CR).

Type HRW can be used with only one rail where space-saving is a necessity, moments act on the system, and high rigidity is required.

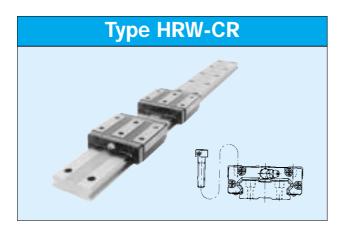
Compact and high load-carrying capability

Because a large number of balls is effective in carrying heavy loads, type HRW maintains excellent rigidity in all directions. The great rail width allows all moments involved to be properly borne by a single rail.

The rail cross section provides a large geometrical moment of inertia, ensuring high rigidity in the lateral direction and thereby eliminating the need for a brace or similar reinforcement.

Types and Features

Low noise


The turning corners of ball trains are provided with synthetic-resin end plates, to ensure that the balls circulate smoothly. This results in low noise and stable linear motion.

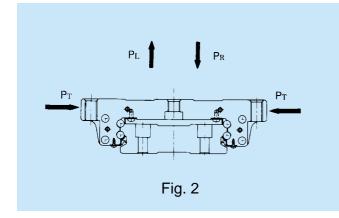
A-IV

Type HRW27 has achieved 50 dB at a running speed of 50 m/min.

Type HRW-CA Image: state states

Low-profile, wide, four-way equal-load type. LMblock mounting holes are tapped, and the flange bottom surface is spot-faced. An LM block can therefore be mounted from either above or below.

Low-profile, wide, four-way equal-load type. LM blocks are to be mounted using the tapped holes provided on their top surfaces.



Low-profile, wide, and radial-load-resistant. LM blocks are to be mounted using the tapped holes provided on their top surfaces.

Load Rating and Permissible Moment in Various Directions

Load rating

Type HRW can bear loads applied in all four directions: radial, reverse-radial, and the two lateral directions.

The basic load ratings of types HRW17 through 60 in all four directions (radial, reverse-radial and the two lateral directions) are equivalent to one another. The values are given in the corresponding dimension tables.

The basic load ratings of types HRW12 and 14 are those for the radial direction in the diagram. The values are given in the corresponding dimension tables. Values for the reverse-radial and lateral directions can be obtained from Table 1.

Table 1 Type HRW12, 14 Basic Load Ratings in Various Directions

Direction	Basic dynamic-load rating	Basic static-load rating
Radial direction	С	C _o
Reverse-radial direction	C _L = 0.78C	$C_{OL} = 0.71C_{O}$
Lateral directions	$C_{T} = 0.48C$	$C_{oT} = 0.35C_{o}$

Equivalent load

The equivalent load for types HRW17 through 60 when loads are applied in all four directions to their LM blocks simultaneously can be obtained using the following equation:

$P_{E} = P_{R} (P$	$P_{\rm L}$)+ $P_{\rm T}$	
where		
$\mathbf{P}_{_{\mathrm{E}}}$:	equivalent load	(N)
_	- In the radial direction	
	- In the reverse-radial direction	
	- In the lateral direction	
P_{R} :	radial load	(N)
\mathbf{P}_{L} :	reverse-radial load	(N)
\mathbf{P}_{T} :	lateral load	(N)

An equivalent load for types HRW 12, 14 when reverseradial and lateral loads are exerted on its LM block simultaneously can be obtained using the following equation:

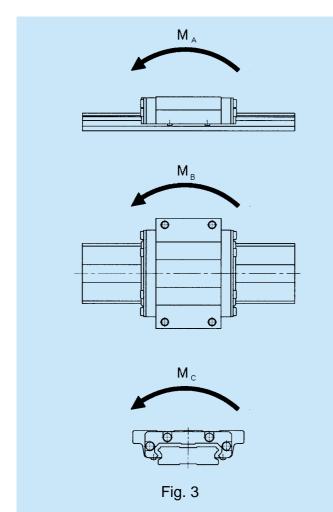
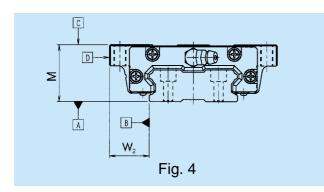

$P_E = X \cdot P_L +$	$\mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$	
where		
P _E	: equivalent load	(N)
	- In the reverse-radial d	irection
	- In the lateral direction	S
P	: reverse-radial load	(N)
P _T	: lateral load	(N)
X and Y	I : equivalent factor	(see Table 2)

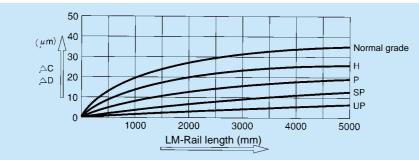
Table 2 Type-HRW12, 14 Equivalent Factor

P _E	X	Y
Equivalent load in the reverse-radial direction	1	2
Equivalent load in the lateral directions	0.5	1

Permissible moment



In type HRW, a single LM block can bear moments in all directions. Table 3 gives the permissible moments in directions M_{A} , M_{B} , and M_{C} for a single LM block.


Table 1 Type HRW Static Permissible Moment

		[Unit : kNm
Model No.	M _A	М _в	M _c
HRW 12	0.022	0.010	0.034
HRW 14	0.030	0.020	0.077
HRW 17	0.03	0.03	0.13
HRW 21	0.06	0.06	0.21
HRW 27	0.14	0.14	0.42
HRW 35	0.46	0.46	1.58
HRW 50	1.09	1.09	3.65
HRW 60	1.54	1.54	6.10

Accuracy standards

The accurancy of type HRW is divided into five grades, normal, high, precision, super-precision.

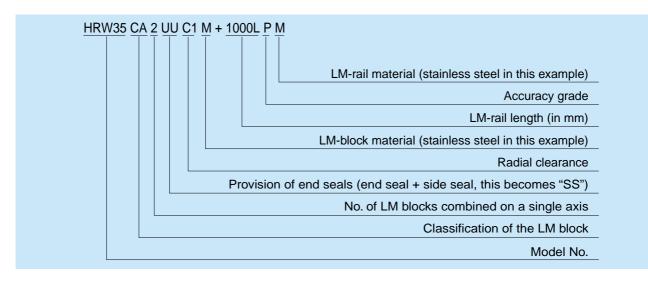


Table 4 Type HRW Accuracy Standard

					-	Unit : mm			
Model	Accuracy standard	Normal	High	Precision	Super- precision	Ultra-precision			
No.	Item	No symbol	н	Р	SP	UP			
	Tolerance for height M	±0.08	±0.04	±0.02	±0.01				
	Tolerance for the height M difference among LM blocks	0.015	0.007	0.005	0.003				
Tolerance for lateral distan	Tolerance for rail-to-block lateral distance W ₂	±0.05	±0.025	±0.015	±0.010				
HRW 12 HRW 14	Tolerance for rail-to-block lateral distance W2 difference among LM blocks	0.02	0.01	0.007	0.005				
	Running Parallelism of LM block surface C with surface A			C (as per Fig	ı. 5)				
	Running parallelism of LM block surface D with surface B			D (as per Fig	ı. 5)				
	Tolerance for height M	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008			
	Tolerance for the height M difference among LM blocks	0.02	0.01	0.006	0.004	0.003			
	Tolerance for rail-to-block lateral distance W ₂	±0.1	±0.03	0 -0.03	0 -0.015	0 -0.008			
HRW 17	Tolerance for rail-to-block lateral distance W2 difference among LM blocks	0.02	0.01	0.006	0.004	0.003			
HRW 21 Running F	Running Parallelism of LM block surface C with surface A	C (as per Fig. 5)							
	Running parallelism of LM block surface D with surface B	D (as per Fig. 5)							
	Tolerance for height M	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01			
	Tolerance for the height M difference among LM blocks	0.02	0.015	0.007	0.005	0.003			
	Tolerance for rail-to-block lateral distance W ₂	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01			
HRW 27	Tolerance for rail-to-block lateral distance W2 difference among LM blocks	0.03	0.015	0.007	0.005	0.003			
HRW 35	Running Parallelism of LM block surface C with surface A	C (as per Fig. 5)							
	Running parallelism of LM block surface D with surface B	D (as per Fig. 5)							
	Tolerance for height M	±0.1	±0.05	0 -0.05	0 -0.03	0 -0.02			
	Tolerance for the height M difference among LM blocks	0.03	0.015	0.007	0.005	0.003			
	Tolerance for rail-to-block lateral distance W ₂	±0.1	±0.05	0 -0.05	0 -0.03	0 -0.02			
HRW 50	Tolerance for rail-to-block lateral distance W2 difference among LM blocks	0.03 0.02 0.01 0.007 0							
HRW 60	Running Parallelism of LM block surface C with surface A	C (as per Fig. 5)							
	Running parallelism of LM block surface D with surface B			D (as per Fig.	5)				

Model-number coding

Radial clearance

Table 5 presents the radial clearances of types HRW.

Table 5 Type-HRW Radial Clearances

			Unit : µm
Clearance symbol	Nomal	Under a light preload	Medium preload
Model No.	No symbol	C1	C0
HRW 12	±1.5	- 4 ~ - 1	
HRW 14	±2	- 5 ~ - 1	
HRW 17	- 3 ~ + 2	-7~-3	
HRW 21	- 4 ~ + 2	- 8 ~ - 4	
HRW 27	- 5 ~ + 2	– 11 ~ – 5	
HRW 35	- 8 ~ + 4	– 18 ~ – 8	- 28 ~ - 18
HRW 50	– 10 ~ + 5	– 24 ~ – 10	- 38 ~ - 24
HRW 60	– 12 ~ + 5	– 27 ~ – 12	- 42 ~ - 27

Contamination Protection

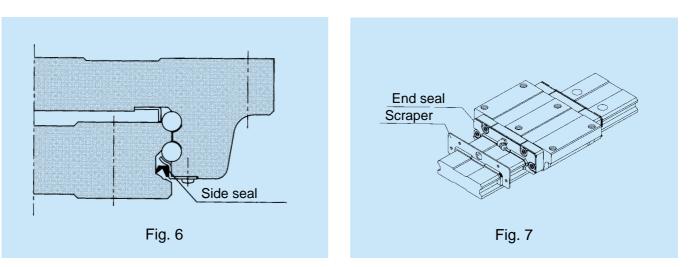
From our wide variety of products for type HRW, you can select the best one for your situation. (For details on seals, see "Contamination Protection" for type HSR on page A-249.)

Seal resistance value

For the maximum value of seal resistance of Seals Type HRW...UU per LM block in which grease is applied, see Table 6.

	Unit: N
Model No.	Resistance
HRW 12	0.2
HRW 14	0.3
HRW 17	2.9
HRW 21	4.9
HRW 27	4.9
HRW 35	9.8
HRW 50	14.7
HRW 60	19.6

Table 6 Type HRW Seal resistance



Side seal for type HRW

Prevents contaminants from entering an LM block from below

Scraper for type HRW

Removes spatters and similar large foreign matter

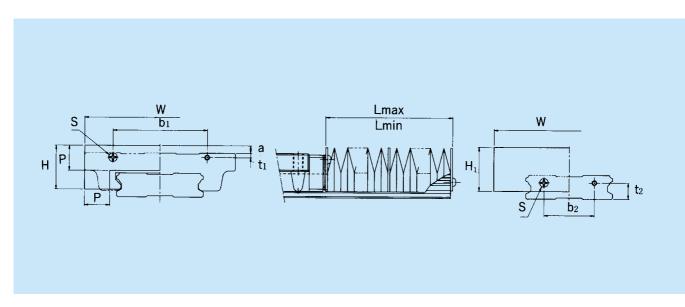
Not all LM Guide models accept all contamination-protection accessories. Please check Table 7.

If your choice is applicable to your system, please note that in some models, attaching a contamination-protection accessory to an LM block changes the block's overall length. To dimension L, add the increment given in the corresponding dimension table.

											ι	Jnit: mm
Model. No.	No sy	o symbol UU		SS		DD		ZZ		КК		
HRW12LRM	0	36.1	0	37	0	37	×	-	×	-	×	-
HRW14LRM	0	44.6	0	45.5	0	45.5	×	-	×	-	×	-
HRW17CA/CAM HRW17CR/CRM	0	49.2	0	51	×	-	Δ	54	Δ	53.6	Δ	58.6
HRW21CA/CAM HRW21CR/CRM	Ο	57.2	Ο	59	×	-	Δ	64.2	Δ	62.8	Δ	69
HRW27CA/CAM HRW27CR/CRM	0	66.8	0	73	0	73	0	79	0	75.6	0	81.8
HRW35CA/CAM HRW35CR/CRM	0	100.1	Ο	107.5	Ο	107.5	0	114.3	0	112.5	Ο	119.7
HRW50CA HRW50CR	0	134.1	0	141.5	0	141.5	0	148.2	0	143.8	0	151
HRW60CA	0	149.5	0	159	0	159	0	169.7	0	165.1	0	175.9

Table 4 Type HRW: LM Block Overall Length with a Contaminationprotection Accessory Attached

Note: O = Applicable

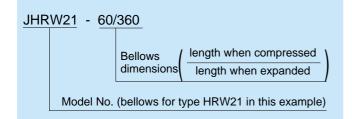

 $\mathbf{x} =$ Not applicable

 Δ = Applicable, but does not allow a side seal to be attached

Dedicated Bellows JHRW for Type HRW

Shown below are the dimensions of dedicated bellows JHRW for type HRW. When ordering the bellows, specify the relevant model number shown in the table below.

Unit : mm


	Boundary dimensions								Α	Applicable			
Model No.	w	н	H,	Ρ	b₁	t,	b ₂	t ₂	Mounting bolt S	а	b	$\left(\frac{\text{Lmax}}{\text{Lmin}}\right)$	LM-Guide model
JHRW 17	68	22	23	15	43	3	18	6	*M3 × 0.5 × 6 <i>1</i>	8	4	5	HRW 17
JHRW 21	75	25	26	17	48	3	22	7	M3 × 0.5 × 6 <i>1</i>	8	3.5	6	HRW 21
JHRW 27	85	33.5	33.5	20	48	3	20	10	M3 × 0.5 × 6 <i>1</i>	10	2.5	7	HRW 27
JHRW 35	120	35	35	20	75	3.5	40	13	M3 × 0.5 × 6 <i>1</i>	6	-	7	HRW 35
JHRW 50	164	42	42	20	100	9	50	16	M4 × 0.7 × 8 <i>1</i>	-	1	7	HRW 50
JHRW 60	180	51	51	25	120	8	60	24	M5 × 0.8 × 10 <i>1</i>	-	-	9	HRW 60

Note 1: Mounting bolts marked with a "**" for type JHRW17 should be used for LM rails only. Use tapping screws of designation 2.5x8 for LM blocks.

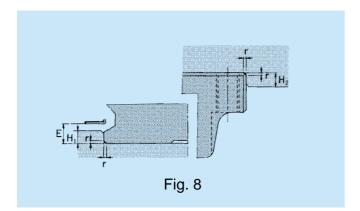
Note 2: The expansion ratios in installation directions other than horizontal, e.g., vertical and wall-hung, differ from those specified in this table (guidelines: A – 1.5). When ordering bellows, please specify your installation direction.

Note 3: If bellows are attached to both ends of an LM block, a grease nipple cannot be installed there. In such a case, contact us.

Model-number coding

Note: A bellows length can be calculated as shown below.

Lmin = $\frac{S}{(A - 1)}$ S: stroke length in (mm) Lmax= Lmin × A A: expansion ratio


Precautions on Use

Mounting-Surface Height and Corner Profile

Normally, mounting surfaces for LM blocks and rails have lateral reference surfaces to aid in positioning rails and blocks with a high degree of accuracy.

For the reference-surface shoulder height, see Table 8.

Furthermore, provide enough space to the corner profile of a mounting surface so that the corner does not interfere with chamfers made on the LM blocks or rails, or provide the corner with a radius smaller than corner radius r specified in Table 8.

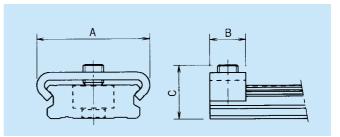


Table 8 Mounting Surface Shoulder Height and Corner Radius Unit : mm

Sint : Init								
Model No.	Corner radius r (max.)	LM rail shoulder height H ₁	LM block shoulder max. height H ₂	Е				
HRW 12	0.5	1.5	4	2				
HRW 14	0.5	1.5	5	2				
HRW 17	0.4	2	4	2.5				
HRW 21	0.4	2.5	5	3				
HRW 27	0.4	2.5	5	3				
HRW 35	0.8	3.5	5	4				
HRW 50	0.8	3	6	3.4				
HRW 60	1.0	5	8	6.5				

Stopper

In types HRW 12 and 14, removing the LM block from the rail causes the balls to fall off. To prevent this, the LM block is delivered with stoppers installed. If the LM Guide is used without the stoppers, be careful not to allow the LM block to overrun.

Model No.	Α	В	С		
HRW 12	22	7	10.5		
HRW 14	28.6	7.6	11.2		

LM-Rail Standard and Maximum Lengths

Table 9 presents the standard and maximum lengths of LM rails for type HRW. If your maximum length is not within the range of this table, we offer special LM rails intended for connected use.

For dimension G when a special length is specified, we recommend those listed in Table 9. A large dimension

G tends to reduce stability at the rail ends, which may degrade accuracy.

For connected use, we offer LM rails that ensure the elimination of level differences at joints. Therefore, when placing an order, please specify the overall length of the LM rails you require.

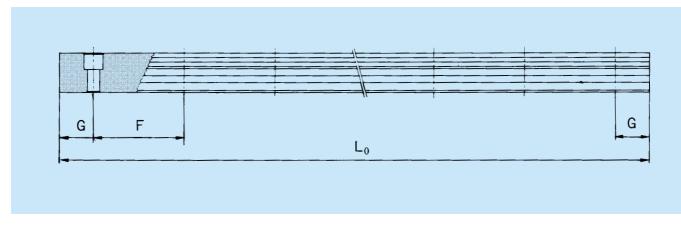


Table 9 Type HRW LM rail Standard and Maximum Lengths

Model No.	HRW 12	HRW 14	HRW 17	HRW 21	HRW 27	HRW 35	HRW 50	HRW 60	
	70	70	110	130	160	280	280	570	
	110	110	190	230	280	440	440	885	
	150	150	310	380	340	760	760	1200	
LM-rail standard	190	190	470	480	460	1000	1000	1620	
	230	230	550	580	640	1240	1240	2040	
length	270	270		780	820	1560	1640	2460	
(L₀)	310	310					2040		
	390	390							
	470	470							
		550							
		670							
Standard pitch F	40	40	40	50	60	80	80	105	
G	15	15	15	15	20	20	20	22.5	
Max longth	(1000)	(1.100)	1900	1900	3000	2000	2000	2000	
Max. length	(1000)	(1430)	(800)	(1000)	(1200)	3000	3000	3000	

Note 1: In special cases in which connected use is impossible but one of the maximum lengths specified here is required, contact us.

Note 2: Numbers in parentheses indicate the maximum lengths of stainless steel types.

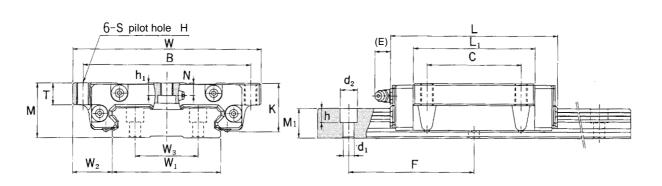
Unit: mm

HRW-CA Type

Standard type

HRW-CAM Type

Stainless-steel type


Model No.		Externation	-	LM block dimensions											
	Height M	Width W	Length L	В	С	S	Н	h₁	L ₁	т	к	N	E		
HRW 17 CA HRW 17 CAM	17	60	51	53	26	M4	3.3	3.2	33.6	6	14.5	4	2		
HRW 21 CA HRW 21 CAM	21	68	59	60	29	M5	4.4	3.7	40	8	18	4.5	12		
HRW 27 CA HRW 27 CAM	27	80	73	70	40	M6	5.3	6	51.8	10	24	6	12		
HRW 35 CA HRW 35 CAM	35	120	107.5	107	60	M8	6.8	8	77.6	14	31	8	12		
HRW 50 CA	50	162	141.5	144	80	M10	8.6	14	103.5	18	46.6	14	16		
HRW 60 CA	60	200	159	180	80	M12	10.5	15.5	117.5	25	53.5	15	16		

Notes:

• An "M" in a model number indicates that the corresponding LM blocks, rails, and balls are made of stainless steel and are therefore corrosion- and environment-resistant.

+ For permissible static moments $M_{_{A}}\!,M_{_{B}}\!,$ and $M_{_{C}}\!,$ see page A-299.

Unit : mm

0			LM-ra	ail dimens	Basic loa	ad rating	Mass			
Grease nipple	Width W₁ ±0.05	W_2	W_{3}	Height M ₁	Pitch F	$d_1 \times d_2 \times h$	C kN	C ₀ kN	LM block kg	LM rail kg/m
PB107	33	13.5	18	9	40	4.5 × 7.5 × 5.3	4.31	8.14	0.15	2.1
B-M6F	37	15.5	22	11	50	4.5 × 7.5 × 5.3	6.18	11.5	0.25	2.9
B-M6F	42	19	24	15	60	4.5 × 7.5 × 5.3	11.5	20.4	0.5	4.3
B-M6F	69	25.5	40	19	80	7 × 11 × 9	27.2	45.9	1.4	9.9
B-PT1/8	90	36	60	24	80	9 × 14 × 12	50.2	81.5	4.0	14.6
B-PT1/8	120	40	80	31	105	11 × 17.5 × 14	63.8	102	5.7	27.8

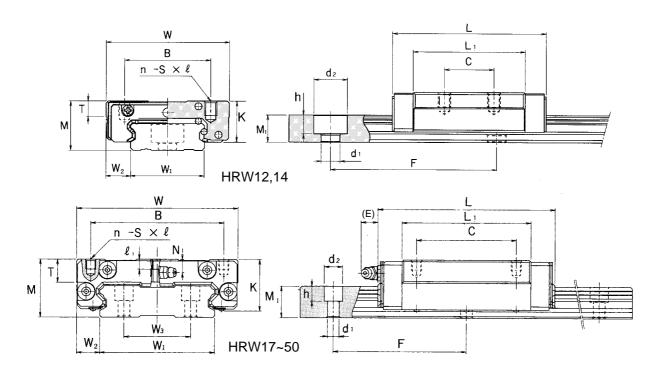
• For standard LM-rail lengths, see page A-305.

• For model-number coding, see page A-301.

HRW-CR Type Standard type

HRW-CRM Type HRW-LRMType

Stainless-steel type


Model No.		Externa mensio											
	Height M	Width W	Length L	В	С	S × I (I)	n	L1	т	к	N	Е	
HRW 12 LRM	12	30	37	21	12	M3 × 0.5 × 3.5 (-)	4	27	4	10	2.8	-	
HRW 14 LRM	14	40	45.5	28	15	M3 × 0.5 × 4 (-)	4	32.9	5	12	3.3	-	
HRW 17 CR HRW 17 CRM	17	50	51	29	15	M4 × 0.7 × 5 (-)	4	33.6	6	14.5	4	2	
HRW 21 CR HRW 21 CRM	21	54	59	31	19	M5 × 0.8 × 6 (-)	4	40	8	18	4.5	12	
HRW 27 CR HRW 27 CRM	27	62	73	46	32	M6×6 (6)	6	51.8	10	24	6	12	
HRW 35 CR HRW 35 CRM	35	100	107.5	76	50	M8×8 (8)	6	77.6	14	31	8	12	
HRW 50 CR	50	130	141.5	100	65	M10 × 15 (15)	6	103.5	18	46.6	14	16	

Notes:

• An "M" in a model number indicates that the corresponding LM blocks, rails, and balls are made of stainless steel and are therefore corrosion- and environment-resistant.

+ For permissible static moments $M_{_{A}}, M_{_{B}}$, and $M_{_{C}}$, see page A-299.

Grease			LM	rail dime	Basic loa	ad rating	Mass			
nipple	Width W₁ ±0.05	W ₂	W ₃	Height M ₁	Pitch F	$d_1 \times d_2 \times h$	C kN	C ₀ kN	LM block kg	LM rail kg/m
Oil hole Ø2.2 drilled hole	18	6	-	6.5	40	4.5 × 8 × 4.5	3.29	7.16	0.045	0.79
Oil hole Ø2.2 drilled hole	24	8	-	7.2	40	4.5 × 7.5 × 5.3	5.38	11.4	0.080	1.20
PB107	33	8.5	18	9	40	4.5 × 7.5 × 5.3	4.31	8.14	0.12	2.1
B-M6F	37	8.5	22	11	50	4.5 × 7.5 × 5.3	6.18	11.5	0.19	2.9
B-M6F	42	10	24	15	60	4.5 × 7.5 × 5.3	11.5	20.4	0.37	4.3
B-M6F	69	15.5	40	19	80	7 × 11 × 9	27.2	45.9	1.2	9.9
B-PT1/8	90	20	60	24	80	9×14×12	50.2	81.5	3.2	14.6

• For standard LM-rail lengths, see page A-305.

• For model-number coding, see page A-301.

Unit : mm

고귀났 A-310

тел. +7(499) 703-39-86

thk-mail@ya.ru